
 

 1 
Workshop on Portability Among HPC Architectures for Scientific  
Applications, 2015 Austin, Texas USA 

 

PSyKAl: a Code Generation to Performance Portability 
[Extended Abstract] 

Mike Ashworth 
STFC Daresbury Laboratory 

Sci-Tech Daresbury 
Warrington WA4 4AD UK 

+44-1925-603178 
mike.ashworth@stfc.ac.uk 

Rupert Ford 
STFC Daresbury Laboratory 

Sci-Tech Daresbury 
Warrington WA4 4AD UK 

+44-1925-603178 
rupert.ford@stfc.ac.uk

Andrew Porter 
STFC Daresbury Laboratory 

Sci-Tech Daresbury 
Warrington WA4 4AD UK 

+44-1925-603178 
andrew.porter@stfc.ac.uk 

Chris Maynard 
The Met Office 
Fitzroy Road 

Exeter EX1 3PB UK 
+44 1392 885680 

christopher.maynard@metoffice.gov.uk 
 

Thomas Melvin 
The Met Office 
Fitzroy Road 

Exeter EX1 3PB UK  
+44 1392 885680 

thomas.melvin@metoffice.gov.uk 
 

ABSTRACT 
This paper presents a domain specific approach to performance 
portability and code complexity reduction in finite element and 
finite difference codes. This approach has been developed for the 
Met Office's next generation atmospheric model which uses finite 
elements on a quasi-uniform grid, and has also been prototyped on 
two finite difference Ocean model benchmarks, one of which is 
based on the NEMO ocean model. The approach is outlined and the 
API's for the atmosphere and ocean models are discussed. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – code generation, 
parsing, preprocessors.  

General Terms 
Algorithms, Performance, Languages. 

Keywords 
GungHo, PSyKAl, PSyclone, atmospheric modelling, ocean 
modelling. 

1. INTRODUCTION 
The Met Office's numerical weather prediction and climate model 
code, the Unified Model (UM), is almost 25 years old. Up to the 
present day the UM has been able to be run efficiently on many of 
the world’s most powerful computers, helping to keep the Met 
Office at the forefront of climate prediction and weather 
forecasting. 

However, with performance increases from each new generation of 
computers now being primarily provided by an increase in the 
amount of parallelism rather than an increase in the clock-speed of 
the processors themselves, running higher resolutions of the UM 
now faces the double challenge of code scalability and numerical 
accuracy. 

The UM's atmospheric dynamical core makes use of a finite-
difference scheme on a regular latitude-longitude grid. The regular 
latitude-longitude grid results in an increasingly disparate grid 
resolution as the resolution increases, due to lines of longitude 
converging at the poles. For example, a 10km resolution at mid-
latitudes would result in a 12m resolution at the poles. The 
difference in resolution leads to increased communication at the 

poles and load balance issues which are known to impair 
scalability; it also leads to issues with numerical accuracy and 
smaller time-steps due to the difference in scale.  

To address this problem the Met Office, NERC and STFC initiated 
the GungHo project. The primary aim of this project is to deliver a 
scalable, numerically accurate dynamical core. This dynamical 
core is scheduled to become operational around the year 2022. The 
project is currently investigating the use of quasi-uniform meshes, 
such as triangular, icosahedral and cubed-sphere meshes, using 
finite element methods. 

The associated GungHo software infrastructure is being developed 
to support multiple meshes and element types thus allowing for 
future model development. GungHo is also proposing a novel 
separation of concerns for Dynamo - the software implementation 
of the dynamical core. This approach distinguishes between three 
layers: the Algorithm layer, the Kernel layer and the Parallelisation 
System (PSy) layer. Together this separation is termed PSyKAl 
(pronounced as 'cycle'). 

Rather than writing the PSy layer manually, the GungHo project is 
developing a code generation system called PSyclone which can 
generate correct code and help a user to optimise the code for a 
particular architecture (by providing optimisations such as 
blocking, loop merging, inlining etc), or alternatively, generate the 
PSy layer automatically. 

In the GOcean project the PSyKAl approach and the PSyclone 
system have been extended for use with finite difference models 
and applied to two Ocean benchmarks, a shallow water model and 
a cut down version of the NEMO ocean model. 

In the following sections the PSyKAl approach is discussed in more 
detail, the PSyclone system is introduced and the Dynamo and 
GOcean API's are outlined 

2. PSYKAL 
The PSyKAl approach separates code into three layers, the 
Algorithm layer, the PSy layer and the Kernel layer. Whilst this 
approach is general we have applied it to Atmosphere and Ocean 
models written in Fortran where domain decomposition is typically 
performed in the latitude-longitude direction, leaving columns of 
elements on each domain-decomposed partition. 
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The top layer, in terms of calling hierarchy, is the Algorithm layer. 
This layer specifies the algorithm that the scientist would like to 
perform (in terms of calls to kernel and infrastructure routines) and 
logically operates on full fields. We say logically here as the fields 
may be domain decomposed, however the algorithm layer is not 
aware of this. It is the scientists responsibility to write this 
algorithm layer. 

The bottom layer, in terms of calling hierarchy, is the Kernel layer. 
The Kernel layer implements the science that the Algorithm layer 
calls, as a set of subroutines. These kernels operate on local fields 
(a set of elements, a single column of elements, or a set of columns, 
depending on the kernel). Again the scientist is responsible for 
writing this layer and there is no parallelism specified here, but 
there is likely to be input from an HPC expert and/or some coding 
rules to help make sure the kernels compile into efficient code. 

The PSy layer sits in-between the Algorithm and Kernel layers and 
its functional role is to link the algorithm calls to the associated 
kernel subroutines. As the Algorithm layer works on logically 
global fields and Kernel layer works on local fields the PSy layer is 
responsible for iterating over columns. It is also responsible for 
including any required distributed memory operations, such as halo 
swaps and reductions. 

As the PSy layer iterates over columns, the potential parallelism 
within this iteration space can be optimised and parallelised. The 
PSy layer can therefore be optimised for a particular hardware 
architecture, such as multi-core, many-core, GPGPUs, or some 
combination thereof with no change to the algorithm or kernel layer 
code. This approach therefore offers the potential for portable 
performance. 
As an example, consider the following “traditional” code fragment: 

!$OMP PARALLEL DO ... 
do i = 1, nlat 
  do j = 1, nlon 
      do k = 1, levels 
      a(k,j,i) = ... 
      b(k,j,i) = ... 
    end do 
end do 
end do 
!$END OMP PARALLEL DO ... 

In the PSyKAl approach this code would be split into the algorithm 
layer: 

call psy_...(a,b,...)  

the PSy layer: 
subroutine psy_...(a,b,...) 
  !$OMP PARALLEL DO ... 
  do i = 1, nlat 
    do j = 1, nlon 
 call kern1(a,...) 
      call kern2(b,...) 
    end do 
  end do  
  !$END OMP PARALLEL DO … 
end subroutine psy_... 

and the kernel layer: 
subroutine kern1(a,...) 
  do k = 1, levels 
    a(k) = ... 
  end do 
end subroutine kern1 

subroutine kern2(b,...) 
   do k = 1, levels 
    b(k) = ... 
  end do 

    end subroutine kern2 

In this way parallelism is encapsulated in the PSy layer and the 
latitude-longitude iteration space can be parallelised in different 
ways: the directives could be changed, the loops could be split, halo 
calls could be added etc. None of these changes would require 
modification to the Algorithm or Kernel layers. 
One difference can be observed here. As kernels contain whole 
columns, it is not possible to manually merge the “k” loops into one 
(which was implemented in the original example code fragment). 
Such a modification would have to be performed by the compiler, 
if the compiler considered it appropriate. 

Clearly the splitting of code into separate layers will have an effect 
on performance. This overhead and how to get back to the 
performance of the “traditional” code, and potentially improve on 
it, will be discussed in the talk. 

A potentially useful way to think of the PSyKAl approach is that 
traditional codes are like a set of lego bricks which have been glued 
together. Typically these lego bricks have been joined in a way that 
works well on certain architectures, however, that form may not 
work so well on different architectures and/or compilers. The 
PSyKAl approach splits code into individual lego bricks and allows 
these bricks to be put back together in the most appropriate way for 
a particular architecture/compiler combination 

3. PSYCLONE 
PSyclone is a code generation system which takes algorithm and 
kernel code as input, and outputs modified algorithm code and a 
generated PSy layer. PSyclone also supports transformations to the 
PSy layer to improve performance. The code output from PSyclone 
can be compiled and linked with the associated kernels to produce 
correct performant code. 

At the time of writing, the PSyclone system has been integrated 
with the Met Office's Dynamo software and this integration is in its 
final review stage. Once this review is complete the Dynamo 
software will be built using the PSyclone system to generate the 
PSy layer. 

In the example in the previous section it can be seen that a single 
call from the algorithm layer results in two calls to kernels. 
Algorithm code writers will not want to manually create calls to the 
PSy layer and determine what arguments to pass to them. However, 
for performance reasons it is desirable to capture the fact that 
multiple kernels can be called together as this gives the most 
flexibility for performance improvement in the PSy layer. 
Therefore PSyclone supports an Application Programmer Interface 
(API) where multiple calls from the Algorithm layer can be put 
together in a single “invoke” call. As an illustration, the algorithm 
example in the previous section becomes: 

call invoke(kern1_type(a,...), & 
            kern2_type(b,...)) 

The invoke call specifies that a particular set of kernels need to be 
called, but does not dictate their order. The PSy layer is free to re-
order calls within an invoke as required as long as any data 
dependencies are honoured. For the best chance to obtain good 
performance the strategy at the algorithm layer should be to place 
as many kernels as possible within as few invokes as possible. 

The invoke syntax is not necessary; however it does ensure that the 
algorithm developer does not accidentally place code in between 
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two kernel calls. In effect, it identifies multi-kernel sections of 
potentially parallel optimisable code. 

PSyclone parses the algorithm layer and replaces any invoke calls 
with a single direct call to the PSy layer. As PSyclone also 
generates the PSy layer it is in control of the names it uses to do 
this. 

Therefore PSyclone would change the invoke call into something 
like the following: 

call psy_...(a,b,...) 

In the above invoke syntax the kernel identifiers are kern1_type and 
kern2_type. However, in the kernel code these identifiers do not 
exist. This is because these identifiers point to metadata that 
describes the behaviour of the kernels. PSyclone uses this metadata 
and the algorithm invoke set of calls to generate correct PSy layer 
code. 

In GungHo and GOcean it was decided to encode and maintain 
kernel metdata as a fortran type within a kernel. Therefore the 
kern1_type and kern2_type identifiers exist as types in the 
respective kernel modules. For example 

module kern1_mod  
  type kern1_type 
  ... 
  end type 
  subroutine kern1(a,...) 
    do k = 1, levels 
      a(k) = ... 
    end do  
  end subroutine kern1 
end module kern1_mod 

 
The specific content of the kernel metadata depends on the 
particular API. Kernel metadata will be discussed in the Dynamo 
and GOcean sections. 

Users of a code generation system such as PSyclone will not want 
to write kernels for all types of functionality. For example, take the 
case of well-known operations, such as matrix multiply, which 
already have efficient implementations. Further, simple operations, 
such as assignment should probably not need to be implemented as 
kernels. Therefore PSyclone is designed so that a particular API can 
recognise certain names and add in appropriate code without it 
existing in the kernel layer. For example, in the following algorithm 
code: 

call invoke(kern1_info(a,...), & 
            matvec(a,b,...),   & 
            kern2_info(b,...)) 

 
the matvec call is recognised by the particular API in PSyclone, and 
within the generated PSy layer an appropriate call is made to a 
library, or some specific code, as chosen by the user. In PSyclone 
these calls are called intrinsic calls as they are managed by the 
system rather than needing explicit kernel implementations, much 
like intrinsics in languages such as Fortran. 

Once PSyclone has parsed the algorithm code and kernel metadata 
it creates an internal tree representation of the PSy layer which 
consists of a schedule containing loops and calls. This tree can 
output Fortran code when requested but also serves as a structure 
that can be manipulated for code optimisations. 

A part of PSyclone separate from the code parsing and code 
generation supports transformations. Transformations modify 
PSyclone's internal tree. At the present time there are a small 
number of transformations provided, including, OpenMP parallel 
do directives, OpenMP parallel region directives, loop splitting, 
loop merging and loop colouring. However adding new 
transformations is not arduous and this list will grow as new 
optimisations are identified. 

Thus, PSyclone is able to parse algorithm code and kernel 
metadata, generate an internal representation of the PSy layer, 
optimise the PSy layer for a particular architecture via a user written 
recipe of transformations, and then generate appropriate PSy layer 
fortran code. 

Optimisations have been purposely made available to users 
(primarily HPC experts) rather than attempting to optimise code 
automatically from the outset. The reason for this is that it is the 
authors’ experience that the required optimisations for a code vary 
from one architecture to another and from one compiler to another 
and further, a small changes in code structure can give very large 
performance differences. Of course automation is not precluded 
and one place where automation is expected to help in the short 
term is in searching the space of optimisations. The authors plan to 
add support for this in the near future. 

Lastly, PSyclone has been designed to support multiple API's. A 
set of base classes can be extended to support a particular API. The 
majority of the code, including the transformations, is independent 
of the API. Two such API's, one for the Met Office's next 
generation atmosphere model written to use finite elements (called 
Dynamo) and the other for a cut down benchmark of the NEMO 
ocean model, written in the GOcean project, are discussed in the 
following sections. 

4. DYNAMO 
Dynamo is the Met Office's next generation atmosphere model 
which is currently being developed as part of the GungHo project. 
The Dynamo API has been changing as new functionality has been 
developed. However, recently the API was considered mature 
enough to be frozen into a version and the decision was made to 
move to using the PSyclone system. The current API is 0.3 and 
PSyclone can generate correct sequential code for this. 

Below is an example of a dynamo algorithm invoke call for the 0.3 
API taken from the code. This invoke only specifies one kernel: 

  call invoke(rtheta_kern_type(rt,u,chi,qr)) 

The associated kernel metadata for the 0.3 API is given below: 

type, ... :: rtheta_kern_type 
  type(arg_type)::meta_args(3)=(/   & 
    arg_type(GH_FIELD,GH_INC,W0),   & 
    arg_type(GH_FIELD,GH_READ,W2),  & 
    arg_type(GH_FIELD*3,GH_READ,W0) & 
  /)  
  type(func_type)::meta_funcs(2)=(/ & 
   func_type(W0,GH_BASIS,GH_DIFF_BASIS),& 
   func_type(W2,GH_BASIS,GH_ORIENTATION)& 
  /) 
  integer::iterates_over=CELLS 
contains 
  procedure,nopass::rtheta_code 
end type 

The three meta_args entries describe the use of the first three 
arguments passed from the algorithm layer (rt,u,chi). Each 
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meta_args entry has three values.  Examining the first one of these 
we see that it is a field object (as they all are in this case, but there 
are other options), it is accessed as an increment (rt=rt+...) in the 
kernel and the kernel expects the argument to be on the W0 finite 
element function space. The metadata for the third argument (chi) 
specifies *3. This indicates that the kernel expects chi to be a vector 
of fields of size 3. 

The meta_funcs entries provide information about the function 
space that the kernel requires internally. Thus, for the W0 function 
space the kernel requires basis-function information and 
differential-basis-function information. 

As the kernel requires basis-function information the user needs to 
specify the required quadrature rule (quadrature can vary in the 
code and could change over time). Therefore an additional 
quadrature rule object is required to be passed from the algorithm 
layer. This is called qr in the above example. 

The iterates_over value specifies what the kernel expects the Psy 
layer to iterate over – this can be cell, vertices, etc. This information 
is used by PSyclone to determine whether colouring is needed when 
parallelising in the PSy layer. 

Finally, the procedure specification specifies the name of the actual 
kernel code. 

5. GOCEAN 
GOcean was a proof-of-principle project which aimed to determine 
whether the PSyKAl and PSyclone approach would be suitable for 
Ocean models. It concentrated on finite difference based ocean 
models as it was expected that finite element based ocean models 
were likely to be amenable. 

Two benchmarks were developed and were hand optimised with 
and without using the PSyKAl separation of layers on a range of 
architectures and compilers. These results will be presented in the 
talk. 

More recently PSyclone has been extended to support the GOcean 
API and work is ongoing to make the PSyclone generated code as 
efficient as the hand optimised code by adding in appropriate 
transformations. 

Below is a cut down example of the kernel metadata for the 1.0 
API, the algorithm interface is not included as it is similar to that 
used in Dynamo: 

type, ... :: continuity 
  type(arg)::meta_args(10)=(/  & 
   arg(WRITE,CT,POINTWISE),   & 
   arg(READ,CU,POINTWISE),    & 
   arg(READ,CV,POINTWISE),    & 
   ... 
   arg(READ,  TIME_STEP),     &        
   arg(READ,  GRID_AREA_T)    & 
  /)       
  integer :: ITERATES_OVER = DOFS 
  integer :: index_offset = OFFSET_NE 
contains  
 procedure,nopass:: & 
   code=>continuity_code 
end type continuity 

 
In the above example the meta_args entries with three values 
describe the kernels expectation and use of the arguments passed 
from the Algorithm layer. Examining the first entry we see that it 
is written to in the kernel and its C-grid staggering position is on T 
points. The pointwise argument is ignored at the moment. 

The final two meta_args entries only have two arguments and 
describe additional information required by the kernel that is not 
provided by the algorithm layer. In the first case it is the current 
timestep and in the second case is a grid area property. 

The iterates_over argument is ignored at the moment and the 
index_offset information specifies the assumed relative index space 
offsets for the different staggerings. This information, when 
combined with the staggering positions of the arguments, allows 
PSyclone to generate correct offsets when creating and optimising 
the PSy layer. The fact the user does not need to worry about such 
indexing is expected to make coding much easier and should 
introduce fewer bugs. 

Finally, as with the Dynamo API, the procedure specification 
specifies the name of the actual kernel code. 
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