

 1
Workshop on Portability Among HPC Architectures for Scientific
Applications, 2015 Austin, Texas USA

PSyKAl: a Code Generation to Performance Portability
[Extended Abstract]

Mike Ashworth
STFC Daresbury Laboratory

Sci-Tech Daresbury
Warrington WA4 4AD UK

+44-1925-603178
mike.ashworth@stfc.ac.uk

Rupert Ford
STFC Daresbury Laboratory

Sci-Tech Daresbury
Warrington WA4 4AD UK

+44-1925-603178
rupert.ford@stfc.ac.uk

Andrew Porter
STFC Daresbury Laboratory

Sci-Tech Daresbury
Warrington WA4 4AD UK

+44-1925-603178
andrew.porter@stfc.ac.uk

Chris Maynard
The Met Office
Fitzroy Road

Exeter EX1 3PB UK
+44 1392 885680

christopher.maynard@metoffice.gov.uk

Thomas Melvin
The Met Office
Fitzroy Road

Exeter EX1 3PB UK
+44 1392 885680

thomas.melvin@metoffice.gov.uk

ABSTRACT
This paper presents a domain specific approach to performance
portability and code complexity reduction in finite element and
finite difference codes. This approach has been developed for the
Met Office's next generation atmospheric model which uses finite
elements on a quasi-uniform grid, and has also been prototyped on
two finite difference Ocean model benchmarks, one of which is
based on the NEMO ocean model. The approach is outlined and the
API's for the atmosphere and ocean models are discussed.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – code generation,
parsing, preprocessors.

General Terms
Algorithms, Performance, Languages.

Keywords
GungHo, PSyKAl, PSyclone, atmospheric modelling, ocean
modelling.

1. INTRODUCTION
The Met Office's numerical weather prediction and climate model
code, the Unified Model (UM), is almost 25 years old. Up to the
present day the UM has been able to be run efficiently on many of
the world’s most powerful computers, helping to keep the Met
Office at the forefront of climate prediction and weather
forecasting.

However, with performance increases from each new generation of
computers now being primarily provided by an increase in the
amount of parallelism rather than an increase in the clock-speed of
the processors themselves, running higher resolutions of the UM
now faces the double challenge of code scalability and numerical
accuracy.

The UM's atmospheric dynamical core makes use of a finite-
difference scheme on a regular latitude-longitude grid. The regular
latitude-longitude grid results in an increasingly disparate grid
resolution as the resolution increases, due to lines of longitude
converging at the poles. For example, a 10km resolution at mid-
latitudes would result in a 12m resolution at the poles. The
difference in resolution leads to increased communication at the

poles and load balance issues which are known to impair
scalability; it also leads to issues with numerical accuracy and
smaller time-steps due to the difference in scale.

To address this problem the Met Office, NERC and STFC initiated
the GungHo project. The primary aim of this project is to deliver a
scalable, numerically accurate dynamical core. This dynamical
core is scheduled to become operational around the year 2022. The
project is currently investigating the use of quasi-uniform meshes,
such as triangular, icosahedral and cubed-sphere meshes, using
finite element methods.

The associated GungHo software infrastructure is being developed
to support multiple meshes and element types thus allowing for
future model development. GungHo is also proposing a novel
separation of concerns for Dynamo - the software implementation
of the dynamical core. This approach distinguishes between three
layers: the Algorithm layer, the Kernel layer and the Parallelisation
System (PSy) layer. Together this separation is termed PSyKAl
(pronounced as 'cycle').

Rather than writing the PSy layer manually, the GungHo project is
developing a code generation system called PSyclone which can
generate correct code and help a user to optimise the code for a
particular architecture (by providing optimisations such as
blocking, loop merging, inlining etc), or alternatively, generate the
PSy layer automatically.

In the GOcean project the PSyKAl approach and the PSyclone
system have been extended for use with finite difference models
and applied to two Ocean benchmarks, a shallow water model and
a cut down version of the NEMO ocean model.

In the following sections the PSyKAl approach is discussed in more
detail, the PSyclone system is introduced and the Dynamo and
GOcean API's are outlined

2. PSYKAL
The PSyKAl approach separates code into three layers, the
Algorithm layer, the PSy layer and the Kernel layer. Whilst this
approach is general we have applied it to Atmosphere and Ocean
models written in Fortran where domain decomposition is typically
performed in the latitude-longitude direction, leaving columns of
elements on each domain-decomposed partition.

 2

The top layer, in terms of calling hierarchy, is the Algorithm layer.
This layer specifies the algorithm that the scientist would like to
perform (in terms of calls to kernel and infrastructure routines) and
logically operates on full fields. We say logically here as the fields
may be domain decomposed, however the algorithm layer is not
aware of this. It is the scientists responsibility to write this
algorithm layer.

The bottom layer, in terms of calling hierarchy, is the Kernel layer.
The Kernel layer implements the science that the Algorithm layer
calls, as a set of subroutines. These kernels operate on local fields
(a set of elements, a single column of elements, or a set of columns,
depending on the kernel). Again the scientist is responsible for
writing this layer and there is no parallelism specified here, but
there is likely to be input from an HPC expert and/or some coding
rules to help make sure the kernels compile into efficient code.

The PSy layer sits in-between the Algorithm and Kernel layers and
its functional role is to link the algorithm calls to the associated
kernel subroutines. As the Algorithm layer works on logically
global fields and Kernel layer works on local fields the PSy layer is
responsible for iterating over columns. It is also responsible for
including any required distributed memory operations, such as halo
swaps and reductions.

As the PSy layer iterates over columns, the potential parallelism
within this iteration space can be optimised and parallelised. The
PSy layer can therefore be optimised for a particular hardware
architecture, such as multi-core, many-core, GPGPUs, or some
combination thereof with no change to the algorithm or kernel layer
code. This approach therefore offers the potential for portable
performance.
As an example, consider the following “traditional” code fragment:

!$OMP PARALLEL DO ...
do i = 1, nlat
 do j = 1, nlon
 do k = 1, levels
 a(k,j,i) = ...
 b(k,j,i) = ...
 end do
end do
end do
!$END OMP PARALLEL DO ...

In the PSyKAl approach this code would be split into the algorithm
layer:

call psy_...(a,b,...)

the PSy layer:
subroutine psy_...(a,b,...)
 !$OMP PARALLEL DO ...
 do i = 1, nlat
 do j = 1, nlon
 call kern1(a,...)
 call kern2(b,...)
 end do
 end do
 !$END OMP PARALLEL DO …
end subroutine psy_...

and the kernel layer:
subroutine kern1(a,...)
 do k = 1, levels
 a(k) = ...
 end do
end subroutine kern1

subroutine kern2(b,...)
 do k = 1, levels
 b(k) = ...
 end do

 end subroutine kern2

In this way parallelism is encapsulated in the PSy layer and the
latitude-longitude iteration space can be parallelised in different
ways: the directives could be changed, the loops could be split, halo
calls could be added etc. None of these changes would require
modification to the Algorithm or Kernel layers.
One difference can be observed here. As kernels contain whole
columns, it is not possible to manually merge the “k” loops into one
(which was implemented in the original example code fragment).
Such a modification would have to be performed by the compiler,
if the compiler considered it appropriate.

Clearly the splitting of code into separate layers will have an effect
on performance. This overhead and how to get back to the
performance of the “traditional” code, and potentially improve on
it, will be discussed in the talk.

A potentially useful way to think of the PSyKAl approach is that
traditional codes are like a set of lego bricks which have been glued
together. Typically these lego bricks have been joined in a way that
works well on certain architectures, however, that form may not
work so well on different architectures and/or compilers. The
PSyKAl approach splits code into individual lego bricks and allows
these bricks to be put back together in the most appropriate way for
a particular architecture/compiler combination

3. PSYCLONE
PSyclone is a code generation system which takes algorithm and
kernel code as input, and outputs modified algorithm code and a
generated PSy layer. PSyclone also supports transformations to the
PSy layer to improve performance. The code output from PSyclone
can be compiled and linked with the associated kernels to produce
correct performant code.

At the time of writing, the PSyclone system has been integrated
with the Met Office's Dynamo software and this integration is in its
final review stage. Once this review is complete the Dynamo
software will be built using the PSyclone system to generate the
PSy layer.

In the example in the previous section it can be seen that a single
call from the algorithm layer results in two calls to kernels.
Algorithm code writers will not want to manually create calls to the
PSy layer and determine what arguments to pass to them. However,
for performance reasons it is desirable to capture the fact that
multiple kernels can be called together as this gives the most
flexibility for performance improvement in the PSy layer.
Therefore PSyclone supports an Application Programmer Interface
(API) where multiple calls from the Algorithm layer can be put
together in a single “invoke” call. As an illustration, the algorithm
example in the previous section becomes:

call invoke(kern1_type(a,...), &
 kern2_type(b,...))

The invoke call specifies that a particular set of kernels need to be
called, but does not dictate their order. The PSy layer is free to re-
order calls within an invoke as required as long as any data
dependencies are honoured. For the best chance to obtain good
performance the strategy at the algorithm layer should be to place
as many kernels as possible within as few invokes as possible.

The invoke syntax is not necessary; however it does ensure that the
algorithm developer does not accidentally place code in between

 3

two kernel calls. In effect, it identifies multi-kernel sections of
potentially parallel optimisable code.

PSyclone parses the algorithm layer and replaces any invoke calls
with a single direct call to the PSy layer. As PSyclone also
generates the PSy layer it is in control of the names it uses to do
this.

Therefore PSyclone would change the invoke call into something
like the following:

call psy_...(a,b,...)

In the above invoke syntax the kernel identifiers are kern1_type and
kern2_type. However, in the kernel code these identifiers do not
exist. This is because these identifiers point to metadata that
describes the behaviour of the kernels. PSyclone uses this metadata
and the algorithm invoke set of calls to generate correct PSy layer
code.

In GungHo and GOcean it was decided to encode and maintain
kernel metdata as a fortran type within a kernel. Therefore the
kern1_type and kern2_type identifiers exist as types in the
respective kernel modules. For example

module kern1_mod
 type kern1_type
 ...
 end type
 subroutine kern1(a,...)
 do k = 1, levels
 a(k) = ...
 end do
 end subroutine kern1
end module kern1_mod

The specific content of the kernel metadata depends on the
particular API. Kernel metadata will be discussed in the Dynamo
and GOcean sections.

Users of a code generation system such as PSyclone will not want
to write kernels for all types of functionality. For example, take the
case of well-known operations, such as matrix multiply, which
already have efficient implementations. Further, simple operations,
such as assignment should probably not need to be implemented as
kernels. Therefore PSyclone is designed so that a particular API can
recognise certain names and add in appropriate code without it
existing in the kernel layer. For example, in the following algorithm
code:

call invoke(kern1_info(a,...), &
 matvec(a,b,...), &
 kern2_info(b,...))

the matvec call is recognised by the particular API in PSyclone, and
within the generated PSy layer an appropriate call is made to a
library, or some specific code, as chosen by the user. In PSyclone
these calls are called intrinsic calls as they are managed by the
system rather than needing explicit kernel implementations, much
like intrinsics in languages such as Fortran.

Once PSyclone has parsed the algorithm code and kernel metadata
it creates an internal tree representation of the PSy layer which
consists of a schedule containing loops and calls. This tree can
output Fortran code when requested but also serves as a structure
that can be manipulated for code optimisations.

A part of PSyclone separate from the code parsing and code
generation supports transformations. Transformations modify
PSyclone's internal tree. At the present time there are a small
number of transformations provided, including, OpenMP parallel
do directives, OpenMP parallel region directives, loop splitting,
loop merging and loop colouring. However adding new
transformations is not arduous and this list will grow as new
optimisations are identified.

Thus, PSyclone is able to parse algorithm code and kernel
metadata, generate an internal representation of the PSy layer,
optimise the PSy layer for a particular architecture via a user written
recipe of transformations, and then generate appropriate PSy layer
fortran code.

Optimisations have been purposely made available to users
(primarily HPC experts) rather than attempting to optimise code
automatically from the outset. The reason for this is that it is the
authors’ experience that the required optimisations for a code vary
from one architecture to another and from one compiler to another
and further, a small changes in code structure can give very large
performance differences. Of course automation is not precluded
and one place where automation is expected to help in the short
term is in searching the space of optimisations. The authors plan to
add support for this in the near future.

Lastly, PSyclone has been designed to support multiple API's. A
set of base classes can be extended to support a particular API. The
majority of the code, including the transformations, is independent
of the API. Two such API's, one for the Met Office's next
generation atmosphere model written to use finite elements (called
Dynamo) and the other for a cut down benchmark of the NEMO
ocean model, written in the GOcean project, are discussed in the
following sections.

4. DYNAMO
Dynamo is the Met Office's next generation atmosphere model
which is currently being developed as part of the GungHo project.
The Dynamo API has been changing as new functionality has been
developed. However, recently the API was considered mature
enough to be frozen into a version and the decision was made to
move to using the PSyclone system. The current API is 0.3 and
PSyclone can generate correct sequential code for this.

Below is an example of a dynamo algorithm invoke call for the 0.3
API taken from the code. This invoke only specifies one kernel:

 call invoke(rtheta_kern_type(rt,u,chi,qr))

The associated kernel metadata for the 0.3 API is given below:

type, ... :: rtheta_kern_type
 type(arg_type)::meta_args(3)=(/ &
 arg_type(GH_FIELD,GH_INC,W0), &
 arg_type(GH_FIELD,GH_READ,W2), &
 arg_type(GH_FIELD*3,GH_READ,W0) &
 /)
 type(func_type)::meta_funcs(2)=(/ &
 func_type(W0,GH_BASIS,GH_DIFF_BASIS),&
 func_type(W2,GH_BASIS,GH_ORIENTATION)&
 /)
 integer::iterates_over=CELLS
contains
 procedure,nopass::rtheta_code
end type

The three meta_args entries describe the use of the first three
arguments passed from the algorithm layer (rt,u,chi). Each

 4

meta_args entry has three values. Examining the first one of these
we see that it is a field object (as they all are in this case, but there
are other options), it is accessed as an increment (rt=rt+...) in the
kernel and the kernel expects the argument to be on the W0 finite
element function space. The metadata for the third argument (chi)
specifies *3. This indicates that the kernel expects chi to be a vector
of fields of size 3.

The meta_funcs entries provide information about the function
space that the kernel requires internally. Thus, for the W0 function
space the kernel requires basis-function information and
differential-basis-function information.

As the kernel requires basis-function information the user needs to
specify the required quadrature rule (quadrature can vary in the
code and could change over time). Therefore an additional
quadrature rule object is required to be passed from the algorithm
layer. This is called qr in the above example.

The iterates_over value specifies what the kernel expects the Psy
layer to iterate over – this can be cell, vertices, etc. This information
is used by PSyclone to determine whether colouring is needed when
parallelising in the PSy layer.

Finally, the procedure specification specifies the name of the actual
kernel code.

5. GOCEAN
GOcean was a proof-of-principle project which aimed to determine
whether the PSyKAl and PSyclone approach would be suitable for
Ocean models. It concentrated on finite difference based ocean
models as it was expected that finite element based ocean models
were likely to be amenable.

Two benchmarks were developed and were hand optimised with
and without using the PSyKAl separation of layers on a range of
architectures and compilers. These results will be presented in the
talk.

More recently PSyclone has been extended to support the GOcean
API and work is ongoing to make the PSyclone generated code as
efficient as the hand optimised code by adding in appropriate
transformations.

Below is a cut down example of the kernel metadata for the 1.0
API, the algorithm interface is not included as it is similar to that
used in Dynamo:

type, ... :: continuity
 type(arg)::meta_args(10)=(/ &
 arg(WRITE,CT,POINTWISE), &
 arg(READ,CU,POINTWISE), &
 arg(READ,CV,POINTWISE), &
 ...
 arg(READ, TIME_STEP), &
 arg(READ, GRID_AREA_T) &
 /)
 integer :: ITERATES_OVER = DOFS
 integer :: index_offset = OFFSET_NE
contains
 procedure,nopass:: &
 code=>continuity_code
end type continuity

In the above example the meta_args entries with three values
describe the kernels expectation and use of the arguments passed
from the Algorithm layer. Examining the first entry we see that it
is written to in the kernel and its C-grid staggering position is on T
points. The pointwise argument is ignored at the moment.

The final two meta_args entries only have two arguments and
describe additional information required by the kernel that is not
provided by the algorithm layer. In the first case it is the current
timestep and in the second case is a grid area property.

The iterates_over argument is ignored at the moment and the
index_offset information specifies the assumed relative index space
offsets for the different staggerings. This information, when
combined with the staggering positions of the arguments, allows
PSyclone to generate correct offsets when creating and optimising
the PSy layer. The fact the user does not need to worry about such
indexing is expected to make coding much easier and should
introduce fewer bugs.

Finally, as with the Dynamo API, the procedure specification
specifies the name of the actual kernel code.

6. ACKNOWLEDGEMENTS
The GungHo work reported here was funded by the STFC Hartree
Centre, and the GOcean work was funded by NERC under grant
reference NE/L012111/1. The work presented here has also
benefitted from the input of other members of the GungHo and
GOcean teams

